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Editorial Commentary

Stem Cell Research in Cell Transplantation:
Sources, Geopolitical Influence, and Transplantation

David J. Eve, Randolph W. Fillmore, Cesar V. Borlongan, and Paul R. Sanberg

Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair,
University of South Florida College of Medicine, Tampa, FL, USA

If the rapidly progressing field of stem cell research reaches its full potential, successful treatments and
enhanced understanding of many diseases are the likely results. However, the full potential of stem cell
science will only be reached if all possible avenues can be explored and on a worldwide scale. Until 2009,
the US had a highly restrictive policy on obtaining cells from human embryos and fetal tissue, a policy that
pushed research toward the use of adult-derived cells. Currently, US policy is still in flux, and retrospective
analysis does show the US lagging behind the rest of the world in the proportional increase in embryonic/
fetal stem cell research. The majority of US studies being on either a limited number of cell lines, or on
cells derived elsewhere (or funded by other sources than Federal) rather than on freshly isolated embryonic
or fetal material. Neural, mesenchymal, and the mixed stem cell mononuclear fraction are the most com-
monly investigated types, which can generally be classified as adult-derived stem cells, although roughly
half of the neural stem cells are fetal derived. Other types, such as embryonic and fat-derived stem cells, are
increasing in their prominence, suggesting that new types of stem cells are still being pursued. Sixty percent
of the reported stem cell studies involved transplantation, of which over three quarters were allogeneic
transplants. A high proportion of the cardiovascular systems articles were on allogeneic transplants in a
number of different species, including several autologous studies. A number of pharmaceutical grade stem
cell products have also recently been tested and reported on. Stem cell research shows considerable promise
for the treatment of a number of disorders, some of which have entered clinical trials; over the next few
years it will be interesting to see how these treatments progress in the clinic.
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INTRODUCTION would be interesting to explore the upsurge in stem cell
manuscripts in more detail, including looking at whether
geopolitical influences on stem cell research remain. ThisStem cell research is rapidly progressing globally

toward characterizing their potential use in the treatment of commentary does include the “raw” data reported from the
American Society for Neural Therapy and Repairdiseases, or use of these cells as a model for disease treat-

ments. There is now a considerable body of work exploring (ASNTR) meetings and, as such, highlights the cutting
edge of trends of stem cell research within certain fields.the isolation, preservation, culturing, and the translation of

a variety of different stem cell types into the clinical set-
ting. In a recent study of articles published in Cell Trans-

STEM CELL PUBLICATIONS
plantation, which is one of the top journals in the field of

IN CELL TRANSPLANTATION
transplantation and can therefore be used as a looking glass

BETWEEN 2008 AND 2009
to see how regenerative medicine is progressing, manu-
scripts categorized under the section of stem cells were As in the larger study of all manuscripts (47), the 214

stem cell-related articles published in Cell Transplanta-the second most prominent, and over 100 were related to
transplantation studies (47). We, therefore, thought that it tion have first been characterized based on the original
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themes of the section editors and the source or type of ditional four look at how stem cell transplants could af-
fect endogenous NSC activity (18,119,120,147). Thestem cells (Table 1).

The largest section was, as expected, shown to be two articles listed as “Fetal stem cells” involve the gen-
eration and use of stem cell-like hepatocytes (34,179).“Neuroscience,” with 58 out of 214 articles (27%).

However, this was closely followed by the “Stem Cells, The second most commonly studied stem cell is the
“mesenchymal stem cell” (MSC; 50 out of 214; 23.4%).Progenitors, and Bone Marrow” section (57 out of 214;

26.6%). Because only 21 of the 52 total neural stem cell This is, in fact, the only type of stem cell to be reported
in all nine editorial groups, and their popularity ispapers were classified as “Neuroscience,” this confirms

that there is considerable overlap between the less spe- ranked in a similar order to the overall ranking of these
groups (i.e., the three most prominent groups are “Neu-cific categories, such as “Stem Cells,” “Methods and

New Technologies“ (third, 26 out of 214; 12.1%), and roscience,” “Stem Cells,” and “Methods” with 14, 13,
and 6 articles, respectively. The majority of the MSCs“Tissue Engineering and Bioartifical Organs” (fourth, 24

out of 214; 11.2%) sections, which are in the same order were derived from bone marrow (43 out of 50), with
four studies using cells derived from placental or am-as in the overall analysis. They predominantly featured

the three highest stem cells types (neural, mesenchymal, nion tissue [e.g. (20,121)], one from the lung (216), one
from the umbilical cord (30), and one from the synov-and mononuclear fraction). Whereas the “Islets and

Other Endocrines” section was fifth in the overall analy- ium (184). One study compared bone marrow and am-
nion-derived MSCs for the treatment of heart injury andsis, it is last in the stem cell-specific review presented

here. This demonstrates how the “Islets and Other Endo- observed two similar but different differentiation end
products by the cells from the two different sources (81).crines” section is primarily focused on islet cell or tissue

transplantation, rather than on stem cell research. Three studies looked at factors that affect endogenous
production of bone marrow-derived MSCs, includingThe next section was “Cardiovascular Systems”

(fifth, 18 out of 214; 8.4%). Whereas the top four ranked disease (53), growth factors (152), and hypothalmic pep-
tides (60). One of the articles relates to a patented cellsections are, in general, fairly equally distributed among

the top three stem cell types, this section is predomi- line that is preparing to undergo clinical trials in the US
[i.e., Athersys’ Multistem (73)].nantly composed of the second and third most widely

studied cell types: the mesenchymal stem cell and mo- The third largest group of stem cells are “mononu-
clear stem cells” (MNCs) with 34 articles (15.9%). Thisnonuclear fraction (although the absence of the number

one cell type, neural stem cells, is no surprise). is a mixture of stem cells that is generally produced by
the differential centrifugation of umbilical cord bloodThe “Hepatocyes” and “Muscle, Bone, and Cartilage”

sections were equal sixth (11 out of 214; 5.1%), fol- (UCB) or bone marrow using Ficoll and can include
stem cells such as MSCs, monocytes, CD14+, CD34+,lowed by the “Skin and Other Tissues” section (6 out of

214; 2.8%). and CD133+ cells. One of the possible steps for the prep-
aration of MSCs involves the collection of the mononu-In previous report on stem cells, we included fetal-

derived neural stem cells (NSCs) within the group of clear fraction from the source tissue, which is then cul-
tured. The MSCs adhere to the culture flasks while thefetal stem cells (51). However, the prominence of neuro-

science in both this and the larger study (47) suggested remaining cells remain in suspension in the media. As
shown by the fact that it is the third most common cellthat a separate category of NSCs may be more appro-

priate. This is borne out by “neural stem cells” being the type, use of the mixed mononuclear fraction is becoming
increasingly prominent. This group has been subdividedmost common type of stem cell studied, with 52 out of

214 articles (24.3 %; see Table 1). This category has into blood- and bone marrow-derived fractions, with the
blood-derived MNC being nearly twice as prominent asbeen split into two (Fetal and Other) to make it clear

how many reports involved cells that were fetal derived. the bone marrow-derived MNCs (22 and 12 manu-
scripts, respectively). Inclusion of the bone marrow-Out of these 52 articles, 27 are derived from a fetal

source with six of these being previously derived cell derived samples with the MSCs could make this the
most investigated stem cell with 62 articles (29%),lines (e.g., the CTX0E03 or ReN001 cells generated by

ReNeuron, Inc., which are currently being used in a clin- whereas including the blood-derived mononuclear cells
with the blood-derived stem cells could make this theical trial to treat stroke in the UK) (170). The “other”

subgroup includes neonatal and adult-derived cells as third largest group (31 out of 214; 14.5%). However,
because MNCs are increasingly being used and are awell as another two that were cell lines derived from

tumors (178,190). Eight of the “other” articles deal ex- more accurate description of the type of stem cells being
studied, those reports involving MNCs were collectedclusively with endogenous NSCs and how they can be

influenced by factors such as age, dietary supplements, into their own group. Whereas blood-derived MNCs are
dominant in “Neuroscience” (9 of the 10 manuscripts),growth factors, and stress [e.g. (10,11,127,146)]. An ad-
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Table 1. The Distribution of the Different Forms of Stem Cells Across the Sections of Cell Transplantation

Mononuclear
Other

Neural Stem Cells
Stem Cells

Fetal Blood- Muscle Fat- Adult
Embryonic Stem Derived Bone Mesenchymal Stem Derived Stem
Stem Cells Cells Fetal Other Stem Cells Blood Marrow Stem Cells Cells Stem Cells Cells Totals

Neuroscience 17,37,114, 1,14,54, 7,10,11, 202 62,63,88, 64 24,33,35,40,53, 141, 162 99,112, 58
126, 182,192 68,84, 65,116, 128,136, 67,79,107,152, 125,159

86,97, 117,127, 137,139, 161,175,181,
101,147 146,158, 160,214 183,195

190,191

Islets and other endocrines 30,46 2

Hepatocytes 45,168 179 3,4 157 70 23,212 164,187 11

Tissue engineering and bi- 44,59, 178,213 108 39,85, 2,22,76,87,135 36,199, 82,92, 24
oartifical organs 185, 103 210,211 113,143,

196 189

Muscle, bone, and cartilage 80,145,156 15,16,19, 11
21,41,102,
154,166

Stem cells, progenitors and 5,13,90,111, 8,9,49, 12,18, 26,32,42, 115,118, 75,110 20,31,57,60, 142 55,71, 57
bone marrow 155,177,186, 50,52, 119,120, 77,149 148,167, 73,91,95,100, 93,109,

203, 205 153,170, 130,172, 200,201 121,138,184, 171
173 174,198 188,208

Methods and new technolo- 129,133,134, 34 43,83, 25,69, 94 123 28,72,105,165, 144,209 140,176 26
gies 193,194 98,131, 197,204 180,217

151

Cardiovascular systems 206 6,61,66, 58,81,124,207 104 163 56,78, 18
74,96, 150
106,132,
169

Skin and other tissue 29 122,216 215 27,89 6

Total 22 2 27 25 9 22 12 50 10 12 23 214

52 34
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bone marrow-derived MNCs are more prominent in purely blood-derived studies, four examined hematopoi-
etic stem cells, including their endogenous production“Cardiovascular” studies (8 out of the 9 manuscripts).

The “Stem Cells, Progenitors, and Bone Marrow” cate- during pregnancy (42), and their derivation from umbili-
cal cord blood (94). A further two looked at UCB-gory is also biased towards the study of blood-derived

MNCs (6 out of 8). derived mesenchymal cells (29,108), whereas one addi-
tional study investigated menstrual blood as a source ofSeveral of the studies are on specific cell types found

within the MNC fraction. This includes endothelial pro- stem cells (149).
Comparing adult-derived cells to the more controver-genitor cells derived from the cord blood-derived MNC

fraction (115,118) as well as Newman et al. (137), who sial embryonic and fetal-derived stem cells (embryonic,
fetal and fetal-derived neural cells), we see that researchexplored the use of CD133+ neurally induced cells de-

rived from the cord blood MNC fraction. is still predominantly on adult stem cells (163 vs. 51).
This may be a reflection on restrictive legislation inAs with MSCs, one of the articles relates to a pat-

ented cell type—Refractory Angina Cell Therapy (Re- some countries, or the fact that adult stem cell research
has been ongoing for considerably longer than the rela-ACT) (75)—an MNC preparation derived from a pa-

tient’s own bone marrow and it is currently being tested tively new embryonic and fetal stem cell research. We
will be comparing stem cell type and location later toin clinical trials for the treatment of angina in Brazil

with favorable results. examine if restrictive legislation could be a factor. If we
compare stem cell manuscripts published in 2008 withThe fourth largest stem cell group was the “other adult

stem cells” (23 out of 214; 10.7%), which included hepa- those published in 2009, we have 99 versus 115 respec-
tively, suggesting a modest increase in the number oftocyte progenitors [e.g. (164,187)], non-mesenchymal am-

nion and placental-derived cells (27,56), induced pluripo- manuscripts. Embryonic versus adult in 2008 and 2009
split 20:79 and 31:84, respectively, showing a greatertent stem cells (iPS) (171,176), cancer stem cells (93), and

reviews covering genetic manipulation of a multitude of increase in the number of embryonic compared with
adult stem cell research studies.stem cell types [e.g. (55,113)]. The presence of research

on iPS cells is of potential interest and may highlight a
Source of Stem Cells by Speciesnew source of pluripotent stem cells (previously only ob-

tainable from embryonic tissue), and this could be a rap- A comparison of the species from which the stem
cells are derived (Table 2) reveals that the majority ofidly advancing part of stem cell research. We expect to

see more research in all of these areas in the future. studies are on human (118 out of 214; 55.1%), followed
by rat-derived (50 out of 214; 23.4%) and mouse-Embryonic stem cells (ESCs) were the fifth largest

group, with 22 articles out of 214 (10.3%). Eight of these derived (34 out of 214; 15.8%) stem cells. The majority
of the human-derived cells were MSCs (29 out of 118;involved the differentiation of the ESCs to neural cells,

including dopamine neurons (203), oligodendrocyte pro- 24.6%), whereas NSCs were dominant in both rats and
mice (24 out of 50; 48% and 9 out of 34; 26.5%, respec-genitors (155), and motor neurons (114) as well as neu-

ral precursor or neural stem cells (NPC/NSC) [e.g. tively). In both rats and mice, non-fetal-derived neural
stem cells were prominent (16 out of 24 and 6 out of 9,(37,191)]. The oligodendrocyte progenitor cells derived

from ESCs are the first ESC-derived treatment to be ap- respectively), whereas, unsurprisingly, in humans most
research was on fetal-derived neural stem cells (as itproved for clinical trials by the US FDA and are owned

by Geron. Teratoma formation by ESCs was investi- would not be easy to harvest adult cells!; 16 out of 18).
Looking at the different cell types, blood-derived MNCsgated in four studies, including the one by Tanaka et al.,

who studied this in primates (182), and Matsuda et al., were almost exclusively human derived (19 out of 22;
86.4%) and the majority of the “other adult stem cells”who showed that cotransplantation of ESCs and MSCs

reduced the teratoma incidence compared with ESC were also human-derived cells (17 out of 23; 73.9%).
This was also true for the blood-derived cell group (7transplants alone (126). The derivation of hepatocytes

from ESCs was also explored by a number of groups out of 9; 77.7%). The dominance of human-derived cells
may be the logical progression from prior studies using[e.g. (177)], as well as insulin-producing cells (133) and

MSCs (205). rodent and other mammal-derived species, and may also
reflect the early clinical translation of some of theseFat-derived stem cells were of increasing prominence

with 12 reports (5.6%), though it is worth noting that studies, because several reports relate to pharmaceutical
company “products” that are either now in, or are pre-several papers were published from the same groups

[e.g. (209,211) and (142,144)]. paring to enter, clinical trials. This is discussed below
under Stem Cell Transplantation. The “newer” fat-“Blood-derived stem cell” group (9 out of 214; 4.2%)

dropped in prominence, but this is partly due to the re- derived stem cells were predominantly rodent based (8
out of 12; 66.7%), which may reflect the relative “new-moval of the UCB-derived MNC group. Of the nine
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Table 2. The Species Source of the Different Types of Stem Cells

Mononuclear
Other

Neural Stem Cells
Stem Cells

Fetal Blood- Muscle Fat- Adult
Embryonic Stem Derived Bone Mesenchymal Stem Derived Stem
Stem Cells Cells Fetal Other Stem Cells Blood Marrow Stem Cells Cells Stem Cells Cells Totals

Human 5,13,17,37, 34,179 1,8,14, 11,190 26,29,42, 3,4,39, 6,61,64, 2,20,24,30,35, 16,21, 23,162, 27,55,71, 118
111,134,155, 44,49, 94,108, 62,63,85, 75,110, 40,46,53,57, 154,166 163 78,92,93,
177,192–194, 50,52, 149,202 88,115, 132,169 67,72,73,91, 99,109,
203 54,68, 118,128, 100,107,121, 112,113,

86,97, 136,137, 124,135,138, 125,150,
131,147, 139,148, 145,175,181, 159,164,
170,185, 160,167, 183,184,188, 171,176,
196 200,201, 195,208,216, 189

214 217

Primate 90,182 25 102 4

Mouse 45,114,126, 9,98, 7,10,117, 32,77 103 22,31,80,152 15,41 142,144, 140,143 34
129,133,168, 151 158,178, 209–212
186,205 198

Rat 38,43,59, 12,18,65, 66,74,96, 28,33,58,60,70, 19,104 36,141 56,82,89 49
83,84, 69,116, 106,157 76,79,81,95,
101,153, 119,120, 122,161,165,
173 127,130, 180,207

146,172,
174,191,
197,204,
213

Rabbit 123 156 215 199 4
Pig 87,105 187 3

Sheep 206 1

Total 22 2 27 25 9 22 12 50 10 12 23 214

52 34
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ness” of these cells, and so they are primarily being ex- ESCs, with all but one of the studies being on human-
derived ESCs. Six of the studies looked at the generationplored in rodents first before human studies are per-

formed; or this could be a reflection of multiple papers by of NSC/NPCs from these cells [e.g. (5,193)], including
the Geron study mentioned earlier (155), whereas Lin-the same groups (which all feature in the rodent section).
quist et al. used ESCs to model early neural develop-

Geographical Distribution of Stem Cell Studies ment (111) and Bakay et al. explored potential problems
with hESC transplantation into primates (13). The US-In several cases, the reports were collaborative efforts

between two or more countries. The reports have been based studies were either on NIH-approved ESC lines,
or were privately funded (e.g., by Geron).categorized based on where the experiments occurred. A

study of the geographical location of the reported studies Looking at the stem cell types for 2008 and 2009, we
can see that ESCs, fetal stem cells, blood-derived stemdemonstrates that the US is dominant, with 90 out of

214 studies (42.1%; Table 3), followed by Japan, with cells (including general and MNCs), muscle stem cells,
and other adult stem cells show little change, whereas32 (15%), and Germany, with 13 (6.1%). In total, 25

different countries were represented. Looking by conti- MSCs show a 33.3% fall in the number of manuscripts,
primarily due to a decrease in Japanese manuscripts onnent, North America is top, with 97, followed by Asia

(60 articles), and then Europe (including Russia/ MSCs, whereas China, France, and Germany show a
sizeable increase. The number of NSC papers nearlyUkraine/Armenia; 46), with South America contributing

another seven and Australasia another four reports. A doubles (increasing from 19 to 33) with the largest in-
crease in fetal-derived (increasing from 9 to 18) com-previous retrospective study in 2007 revealed a bias to-

ward adult stem cell research in the US when compared pared to other sources (increasing from 10 to 15),
whereas fat-derived stem cell papers triple (from 3 to 9).with fetal and embryonic research (51). The restrictive

nature of the US legislation meant that a number of state The overall number of embryonic/fetal-derived stem cell
manuscripts actually showed a greater than 50% in-and alternative sources (from Federal) for funding of

ESC research arose. This varied from state to state de- crease from 2008 to 2009 (going from 20 to 31, which
was predominantly a result of the doubling in fetal-pendent on their own legislation and a review, published

in 2008, provided a summary of the availability of fund- derived NSCs). By comparison, adult stem cells showed
a 79:84 split for 2008:2009, respectively, suggesting thating across the states (48). The legislation has changed

since then, as in 2009 the restrictive use of ESCs was while adult stem cells were more popular, ESCs are be-
ing studied at an increasing rate. The US split is 12:moderated in the US and it will be interesting to see

whether this will influence the type of cells studied. An 17 for “embryonic” and 24:37 for “adult” stem cells,
suggesting that the US may still be in opposition to theupdate on the current funding situation by state would

be timely, but is not the remit of this report. A summary overall worldwide trend with a greater increase in adult
stem cell research (54.2%) than embryonic (41.6%)—can be found at http://www.isscr.org/public/regions/ and

http://www.ncsl.org/IssuesResearch/Health/Embryonic the increase in non-fetal-derived NSCs being a major
contributing factor to this.andFetalResearchLaws/tabid/14413/Default.aspx.

However, it is likely to be too soon to see whether
STEM CELL TRANSPLANTATIONthe changes in legislation have had an effect, but this

report will provide a good yardstick against which to One of the ultimate aims of stem cell research is to
develop new therapies for a number of disorders. Thismeasure future reports. It is also important to consider

that in 2010 federal funding for embryonic stem cell re- could be either for cell replacement, or to provide spe-
cific factors, as a number of studies now suggest. Cellsearch was halted by court order, followed by a tempo-

rary stay on this decision while the matter is under re- Transplantation is one of the top two journals in the
field of transplantation, and so a number of its articlesview.

This report shows that the bias towards adult stem relate to stem cell transplantation in either preclinical/
clinical trials or in animal models. Consequently, wecell research would appear to still be present, with 61

(67.8%) of the 90 US-based manuscripts involving adult looked at the stem cell transplantation studies in Cell
Transplantation in 2008–2009, examining the types ofstem cells, compared with 29 (32.2%) being embryonic

or fetal derived (including over half of the US NSC transplants [e.g., allogeneic (same species) or xenoge-
neic (different species)]. The data primarily cover origi-manuscripts). In fact, the US is top in every category

except “fat-derived,” “muscle,” “other adult stem cells,” nal articles, but a few reviews of cell transplantation in
specific species are also included. Sixty percent of theand bone-marrow-derived MNCs. In both the NSCs (fe-

tal and others) and blood-derived stem cells (general and articles (129 out of 214) involved transplantation and,
as Table 4 shows, the majority of the 129 transplantationMNCs) the US has more manuscripts than all the other

countries combined. Surprisingly, the US is also top in studies were actually allogeneic (77; 59.7%). In fact, all
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Table 3. The Distribution of the Different Types of Stem Cell Research Across the World

Mononuclear
Other

Neural Stem Cells
Stem Cells

Fetal Blood- Muscle Fat- Adult
Embryonic Stem Derived Bone Mesenchymal Stem Derived Stem
Stem Cells Cells Fetal Other Stem Cells Blood Marrow Stem Cells Cells Stem Cells Cells Totals

USA 5,13,17,37,45, 34 8,14,38,44, 7,10–12, 26,42,77, 39,62,63, 2,22,24,35,67,72, 41 162 56,71,99, 90
111,155,193, 49,50,52,54, 18,65, 149,202 88,103, 73,105,124,152, 125,150,
194,203 59,68,84,97, 116,117, 118,128, 175,181,183 159,171,

101,131,147, 119,120, 136,137, 176
151,153, 146,158, 139,148,
173,185,196 172,174, 167,200,

197,198 201,214
Canada 186 130,213 15,16,102 6
China 205 43 85,123 61 76,156,180,216, 215 199 12

217
Singapore 98 1
Taiwan 32 110 30,31,100 55,78,109, 10

112,113
Japan 90,126,129, 204 74,106 57,70,80, 141,142, 82,89,92,93, 32

134,182 91,95,145, 144,209– 140,143,164,
184,207 212 187,189

Spain 3,4 23,36,163 5
France 190 40,161 19,154 5
Germany 133,168 178 206 6,66,96, 58,87,135,138, 13

132 165
Italy 160 53,81,121,122, 21 27 9

188,208
Austria/Switzerland 83 25 94 20 4
Sweden 179 1 2
UK 86,170 69 115 79 5
Argentina 46 1
Armenia/Ukraine/Russia 60,195 2
Brazil 177 75,157,169 28 5
Ecuador 64 1
South Korea 29,108 33,107 104 5
Australia 9 1
New Zealand 192 127,191 3
Mexico 114 1
Poland 166 1
Total 22 2 27 25 9 22 12 50 10 12 22 214

52 34
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Table 4. The Type of Transplants Described in Cell Transplantation by Species

Recipient

Donor Human Primate Mouse Rat Rabbit Sheep Pig Total

Human 6,26,35,39,46,64,72, 13,44,196 16,21,27,34,62,63,85, 1–4,14,17,24,29,37, 52
73,75,78,100,110,132, 128,139,145,154,160, 40,67,86,88,107,124,
137,155,166,169,170, 179,185,214,217 131,136,147,148,162,
175,177,188,208 163,181,183,190,192,

195,200,201 70

Primate 25,102 90,182 4

Mouse 7,15,22,41,45,80,126, 114
151,152,158,168,186,
205,212 15

Rat 18,19,28,33,36,43,56,
58,60,66,69,70,79,81,
84,89,95,96,101,104,
106,119,120,122,130,
141,157,161,165,172,
180,191,197,204,207,
213 36

Rabbit 199 1

Sheep 206 1

Pig 105 87 2

Total 22 5 33 65 1 1 2 129

but the human-derived cells were predominantly trans- MNCs, one involving MSCs, and one on ESCs. Nine of
the 13 German articles were also allogeneic transplants,planted in an allogeneic manner. The majority of trans-

planted cells came from humans (70; 54.3%), followed with six being cardiovascular related, including two in
humans using bone marrow-derived MNCs (6,132).by the rat (36; 27.9%) and mouse (15; 11.6%), whereas

the most common recipient was the rat (65; 50.4%), fol- Three other nonhuman studies involved allogeneic trans-
plants of MSCs, whereas another three were of bonelowed by the mouse (33; 25.6%) and humans (22;

17.1%). No human xenografts were reported, whereas marrow-derived MNCs. Also, five of the six Canadian
articles were allogeneic transplants. None of these werexenogeneic transplantation of human stem cells was

more than twice as common as allogeneic transplants in humans, two involved muscle stem cells (15,102), and
two were neural stem cells (130,213). This compares(48 vs. 22). The rat, rabbit, and sheep transplants were

all allogeneic. with the more prominent countries: USA (22 out of 90),
Japan (7 out of 32), and China (4 out of 12). Year-by-A comparison of the allogeneic transplants by cate-

gory reveals that the largest section was “Stem Cells, year comparison revealed a sizeable increase in the
number of human allogeneic (6 vs. 16) and human–ratProgenitors, and Bone Marrow” (19/77), followed by

“Neuroscience” (15/77), “Cardiovascular Systems” (13/ transplants (11 vs. 17), whereas human–primate and hu-
man–mouse transplants decreased slightly (2 vs. 1 and77), and “Methods and New Technologies” (10/77). A

detailed study of the more descriptive sections (Stem 9 vs. 7, respectively). The increase in human allogeneic
transplants may reflect that prior animal studies haveCells, Methods, and Tissue Engineering) reveals that the

majority were neuroscience related. Country comparison demonstrated success and that this is the natural progres-
sion from these prior studies.revealed that all five of the Brazilian articles were actu-

ally classified as articles involving allogeneic transplants Thirteen of the allogeneic transplantations were also
autologous; nine were in humans, with one in primatesrelating to the liver (157,177), heart (75,169), and eye

(28), with the cardiac-related articles being human allo- (25), pigs (87), rabbits (199), and sheep (206). All but
one of the human autologous transplants involved bonegeneic transplants and the remainder being allogeneic rat

transplants, with three involving bone marrow-derived marrow-derived MNCs (6 out of 9) or MSCs (2 out of
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9) for the treatment of cardiovascular disorders (6,75, bryonic stem cells by comparison or due to geopolitical
pressures. Neural stem cells are the most commonly132,169), diabetes (46), stroke (110), spinal cord injury

(64), and non-musculoskeletal disorders (100). The last studied single type of stem cell, whereas a combined
mesenchymal stem cells and bone marrow-derived mo-human allogeneic transplant used UCB-derived MNCs

to enhance vasculogenesis in the potential treatment of nonuclear fraction would be slightly more prominent.
This latter group of cells has been studied in severalischemic disorders (39). Two reports originated from

each of the following countries: Brazil, Taiwan, and clinical trials currently either on-going or beginning in
a number of different countries. Embryonic and fetal-Germany. The remaining studies were performed in Ar-

gentina, Ecuador, and the US. The Argentina and Ecua- derived stem cells are also being studied clinically, espe-
cially with pharmaceutical company backing. The ma-dor studies, and one of the Brazilian studies, also in-

volved some degree of collaboration with the US, which jority of the cardiovascular system-based reports are
allogeneic transplant studies of adult stem cells. Thismay just be as consultants or the US may have a greater

contribution to the study (46,64,75). For instance, sev- highlights the growing importance and potential use of
stem cells for a number of disorders and suggests thateral of the studies, while based in the US, were using

fetal-derived stem cells obtained and modified in an- the next few years could reveal some important ad-
vances in the clinic for the treatment of these disorders.other country [e.g., ReN001 (or CTX0E03) cells from

ReNeuron in the UK] (49,50,131,147,170). These col-
laborations demonstrate the potential worldwide impact REFERENCES
of stem cell research in the treatment of a number of

1. Åkesson, E.; Sandelin, M.; Kanaykina, N.; Aldskogius,disorders, and by collaborating with other countries this
H.; Kozlova, E. N. Long-term survival, robust neuronalallows the US to be involved in studies that would have
differentiation, and extensive migration of human fore-
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in the US. dorsal root ganglion cavity. Cell Transplant. 17(10–11):

1115–1123; 2008.Whereas this commentary does provide insight into
2. Ali, M. M.; Maki, M.; Masuda, T.; Yu, S. J.; Yasuhara,stem cell research, there are certain limitations to be

T.; Hara, K.; McGrogan, M.; Dezawa, M.; Bankiewicz,considered. The information is based on publications in
K.; Case, C.; Borlongan, C. V. Notch-induced human

one journal, admittedly one of the leading transplanta- bone marrow stromal cell grafts express neuronal pheno-
tion journals. Cell Transplantation publishes manu- typic markers and reduce ischemic cell loss in tandem
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165. Scháfer, R.; Ayturan, M.; Bantleon, R.; Kehlbach, R.;W.-M.; Zhao, L.-R. Hematopoietic growth factors en-

hanced the contribution of bone marrow stem cells in Siegel, G.; Pintaske, J.; Conrad, S.; Wolburg, H.; North-
off, H.; Wiskirchen, J.; Weissert, R. The use of clinicallyneovascularization and neurogenesis during the chronic

phase of brain ischemia. Cell Transplant. 17(4):478; approved small particles of iron oxide (SPIO) for label-
ing of mesenchymal stem cells aggravates clinical symp-2008.

153. Piao, C.-S.; Zhao, L.-R. Stem cell factor and granulo- toms in experimental autoimmune encephalomyelitis and



1508 EVE ET AL.

influences their in vivo distribution. Cell Transplant. 181. Suzuki, M.; McHugh, J.; Tork, C.; Shelley, B.; Hayes,
A.; Bellantuono, I.; Aebischer, P.; Svendsen, C. N. Intra-17(8):923–941; 2008.

166. Seidel, M.; Borczynska, A.; Rozwadowska, N.; Kurpisz, muscular delivery of GDNF with human mesenchymal
stem cells protects dying motor neurons and prolongsM. Cell-based therapy for heart failure: Skeletal my-

oblasts. Cell Transplant. 18(7):695–707; 2009. survival in a rat model of familial ALS. Cell Transplant.
17(4):482–483; 2008.167. Shahaduzzaman, S. D.; Golden, J. E.; Green, S. M.;

Womble, T.; Sanberg, P. R.; Pennypacker, K. R.; Will- 182. Tanaka, Y.; Ikeda, T.; Kishi, Y.; Masuda, S.; Shibata,
H.; Takeuchi, K.; Komura, M.; Iwanaka, T.; Muramatsu,ing, A. E. Human umbilical cord blood (HUCB) en-

hances neuroprotection and significantly alters neural S.; Kondo, Y.; Takahashi, K.; Yamanaka, S.; Hanazono,
Y. ERas is expressed in primate embryonic stem cellsgene expression profile subsequent to oxygen and glu-

cose deprivation. Cell Transplant. 18(2):234; 2009. but not related to tumorigenesis. Cell Transplant. 18(4):
381–389; 2009.168. Sharma, A. D.; Cantz, T.; Vogel, A.; Schambach, A.;

Haridass, D.; Iken, M.; Bleidißel, M.; Manns, M. P.; 183. Tate, C. C.; Fonck, C.; McGrogan, M.; Case, C. C. Hu-
man bone marrow-derived stem cells rescue neural cellsSchöler, H. R.; Ott, M. Murine embryonic stem cell-
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